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Understanding how phenotypes evolve requires disentangling the
effects of mutation generating new variation from the effects of
selection filtering it. Tests for selection frequently assume that
mutation introduces phenotypic variation symmetrically around
the population mean, yet few studies have tested this assumption
by deeply sampling the distributions of mutational effects for
particular traits. Here, we examine distributions of mutational
effects for gene expression in the budding yeast Saccharomyces
cerevisiae by measuring the effects of thousands of point muta-
tions introduced randomly throughout the genome. We find that
the distributions of mutational effects differ for the 10 genes sur-
veyed and are inconsistent with normality. For example, all 10 dis-
tributions of mutational effects included more mutations with
large effects than expected for normally distributed phenotypes.
In addition, some genes also showed asymmetries in their distri-
bution of mutational effects, with new mutations more likely to
increase than decrease the gene’s expression or vice versa. Neutral
models of regulatory evolution that take these empirically deter-
mined distributions into account suggest that neutral processes
may explain more expression variation within natural populations
than currently appreciated.

gene expression | transcription | mutation | quantitative genetics

Variation in gene expression is widespread within and be-
tween species (1, 2). This variation reflects the joint action of

mutation introducing new phenotypic variation and selection
filtering variants based on their fitness effects. When genes ex-
hibit differences in the rate at which they accumulate expression
variation over time, selection pressure that varies among genes is
often invoked to explain variability in expression divergence (3,
4). However, variability in the effects of new mutations on gene
expression may also affect evolutionary outcomes by biasing the
variety of expression phenotypes available for selection and drift
to act upon (5, 6). Identifying such biases in mutational effects is
challenging because the effects of mutation are confounded with
the effects of selection in natural populations.
One way to isolate the effects of new mutations on gene ex-

pression is to perform a mutation accumulation (MA) experiment,
which allows new mutations to accumulate in the near absence of
natural selection (7). By comparing expression among evolved
lines at the end of a period of MA, such experiments have been
used to estimate mutational variance (VM) for gene expression,
which is the variance in a gene’s expression due to spontaneous
mutations each generation. VM for gene expression differs
among genes (8) and has been estimated genome-wide for model
organisms including budding yeast (9), nematode worms (10, 11),
and Drosophilid flies (12–15). Variation in expression VM ob-
served among genes in these studies reveals differences in the
potential for a gene’s expression to change over time. For ex-
ample, in yeast, genes with more transcriptional regulators (as
estimated from transcriptional profiling of gene deletion strains)
tended to have higher VM for expression than genes with fewer
transcriptional regulators (9), suggesting that differences among

regulatory networks can influence changes in gene expression
due to new mutations.
Although these MA studies offer a global view of transcrip-

tional changes across the genome, they provide a very limited
view of the distribution of mutational effects for any single gene
because the number of spontaneous mutations sampled in each
study is low. For example, the 12.1-Mb yeast genome has a point
mutation rate in the range of 10−9 to 10−10 per base pair per cell
division, suggesting that only 4 point mutations occur on average
every 1,000 cell divisions. Consequently, even ambitious MA
experiments that capture 2,000 to 5,000 generations of sponta-
neous mutations are expected to survey fewer than 2 dozen point
mutations per line. Mutagenesis studies, by contrast, can sample
mutations affecting expression of a given gene much more deeply,
typically trading off breadth of information across the genome
for more focused and comprehensive descriptions of distribu-
tions of mutational effects for single genes. Thus far, such single-
gene studies have focused primarily on mutations in cis-acting
sequences controlling a gene’s expression, such as promoters
(16). For example, massively parallel reporter gene approaches
have been used to describe the effects of thousands of mutations
in promoters and enhancers on gene expression from diverse
organisms including viruses, bacteria, yeast, and metazoans (e.g.,
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refs. 17–20). However, these cis-acting sequences are only one
part of the mutational target for gene expression (21). Regions of
the genome encoding or regulating trans-acting factors that in-
teract with cis-acting sequences, either directly or indirectly, can
also harbor mutations that affect gene expression (22). This
trans-mutational target size is expected to be much larger than
the cis-mutational target size (23) and can show different biases
in the effects on expression (24).
Here, we use genome-wide mutagenesis to deeply sample and

compare the effects of new mutations on expression of 10 focal
genes. We observe differences in the distributions of mutational
effects among these genes that are only partially captured by
quantifying variance of mutational distributions (VM). In particu-

lar, we observed differences in higher moments of these distri-
butions, including the extent of asymmetry described by skewness
and the frequency of mutations with extreme effects on expression
related to kurtosis. Consistent with these observations, we find
that all 10 distributions of mutational effects for gene expression
are nonnormal with heavy tails (i.e., they contain more extreme
events than a normal distribution). By using these empirically
determined distributions of mutational effects to parametrize
neutral models of gene expression evolution, we show that dra-
matic differences in expression divergence can occur among genes
even in the absence of selection. In other words, we find that
distributions of mutational effects for gene expression are 1) more
complex than frequently assumed, 2) different among genes, and
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Fig. 1. Experimental overview. (A) A schematic describing the experimental design is shown: (i) cells containing a promoter sequence (P) driving expression
of the yellow fluorescent protein (YFP) coding sequence were grown to saturation and split into samples for mutagenesis and sham treatments. (ii) Following
these treatments, single cells were deposited on YPD agar plates using fluorescence-activated cell sorting (FACS) in a 96-well plate format, leaving empty
spaces for controls. At least 8 plates were collected per promoter, with each including EMS-treated cells (n = 30/plate) and sham-treated cells (n = 8/plate for
both promoter-matched and PTDH3-YFP shams) as well as wild-type control samples (n = 24/plate) and nonfluorescent control lines (n = 1/plate) added to the
empty spaces. (iii) Each of these plates was used to inoculate liquid cultures in 96-well plates in quadruplicate, with fluorescence in the resulting cells scored
using flow cytometry. (iv) YFP expression was estimated (BD Accuri C6) for each cell in each sample as the ratio of fluorescence (log FL1-A: 488-nm laser, 530/
30-nm filter) and cell size (log FSC-A). YFP fluorescence was converted to estimated mRNA level, adjusting for known nonlinearity between YFP fluorescence
and mRNA abundance (78). Median YFP fluorescence was then taken as the expression level for each sample. (v) For each EMS-treated and sham-treated line,
expression level was calculated as the mean of the median expression levels from the 4 replicate populations. (vi) Variability in expression among lines
isolated from the EMS-treated and sham-treated populations were used to estimate promoter-specific distributions (vii) reflecting mutational and envi-
ronmental variance, respectively. (B) Median expression levels (x axis) and expression noise (y axis) are shown for 40 independent unmutagenized (sham-
treated) lines per promoter. Each data point represents the mean of 4 replicate flow cytometry measurements per line scaled relative to the activity of the
TDH3 promoter. Expression noise was measured as the coefficient of variation (CV) among cells measured within each replicate, and the mean CV was
calculated from the 4 replicates. Error bars represent 95% confidence intervals for each line. (C) Quantile–quantile plot comparing the distribution of mu-
tational effects for 2 independent mutagenesis experiments for the TDH3 promoter (x axis: experiment 1, n = 254; y axis: experiment 2, n = 1,213) are shown.
The second panel enlarges the area corresponding to the central 95% density of both experiments (solid lines: 10th and 90th quantiles; dotted lines: 25th and
75th quantiles). The dashed line on the diagonal represents the hypothesis that the 2 samples are drawn from the same distribution. A nonparametric AD test
fails to reject the null hypothesis that these 2 samples come from a common population (AD criterion = 0.76056; P = 0.29).
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3) able to introduce biases in the direction of neutral evolution.
These observations suggest that failing to account for mutational
biases may underestimate the role of neutral evolution in expression
divergence.

Results and Discussion
To compare the effects of mutations on gene expression driven
by promoters from different genes, we selected 10 promoters from
Saccharomyces cerevisiae: GPD1, OST1, PFY1, RNR1, RNR2,
STM1, TDH1, TDH2, TDH3, and VMA7. These promoters vary
for properties previously hypothesized to affect the mutability of
gene expression, including expression noise (25), nucleosome oc-
cupancy (25), and number of mismatches to a canonical TATA
box (9) (SI Appendix, Table S1). This set of genes includes 3
paralogs, TDH1, TDH2, and TDH3, and 2 genes acting in the
same molecular complex, RNR1 and RNR2. All of these pro-
moters drive expression at levels that can be reliably detected by
flow cytometry. For each gene, we cloned the promoter sequence
upstream of the coding sequence of a yellow fluorescent protein
(YFP) and inserted the resulting reporter gene into the S. cerevisiae
genome at the ho locus. YFP expression level from these reporter
genes is therefore expected to measure effects of mutations in the
cis-acting promoter sequence as well as all trans-acting regulators
of the gene from which the promoter was derived.
To assess the impact of new mutations on expression driven by

each promoter, we exposed cells carrying each reporter gene to a
low dose of the chemical mutagen ethyl methanesulfonate
(EMS) (Fig. 1A). We also subjected cells with each promoter to
the same mutagenesis protocol except for the exposure to EMS
to create a control (“sham-treated”) population that captured
nongenetic sources of variability. EMS introduces G→A and
C→T point mutations (26). While these mutations are a subset of
the types of changes that arise spontaneously, they are the most
common type of point mutation observed in MA lines (27, 28)
and the most common type of single-nucleotide polymorphism
segregating in natural populations of S. cerevisiae (29, 30). Using
a canvanine resistance assay with a known mutation rate (31, 32),
we determined that the EMS conditions used introduced
∼29 mutations per cell (95% percentiles: 24 to 39). This same
level of mutagenesis was used previously to characterize effects
of new mutations on YFP expression driven by the TDH3 pro-
moter (PTDH3-YFP) (24, 32). Genetic mapping has shown that
mutants isolated under these conditions typically carried no more

than 1 mutation causing a measurable change in PTDH3-YFP ex-
pression (33); thus, most mutations introduced are expected to
have no effect on expression of the focal gene.
From both the EMS- and sham-treated populations, we used

fluorescence-activated cell sorting (FACS) to isolate single cells
randomly with respect to the YFP fluorescence level (Fig. 1A). For
each promoter, at least 240 mutagenized cells and at least 64 sham-
treated cells were sorted individually onto solid YPD agar plates in
a 96-well format. After allowing these sorted single cells to grow
into colonies, establishing a distinct “line” from each sorted cell,
4 replicate populations were inoculated for each line (Fig. 1A). YFP
fluorescence levels were then estimated for at least ∼12,000 events
captured with flow cytometry from each replicate population (SI
Appendix, Table S2 and refs. 34 and 35). Ultimately, we established
148 to 254 lines for each promoter from the mutagenized pop-
ulation (median, 214) as well as 44 to 62 lines for each promoter
from each sham-treated population (median, 55). After correcting
for variation in cell size, the median YFP expression level within
each replicate was taken as a point estimate of that sample’s aver-
age expression level (Fig. 1A and ref. 36). The expression level for
each line was then defined as the mean of the median values from
the 4 replicates (Fig. 1A). This same procedure was used to estimate
YFP expression levels from similar data in prior work (37).
The 44 to 62 lines established from each sham-treated pop-

ulation were expected to be genetically identical (barring spon-
taneous mutations); thus, variation in the expression level among
the sham-treated lines for each promoter was used to estimate
the nongenetic deviation among individuals separated into lines
derived from single cells, akin to quantitative genetic environ-
mental variance (VE). Comparing expression of lines derived from
the sham-treated population for each promoter shows differences
among promoters in average expression level, expression noise,
and environmental variance (Fig. 1B). Each line established from
the mutagenized population is expected to carry a distinct set of
new mutations; thus, variation in the expression level among the
148 to 254 mutagenized lines for each promoter reflects a com-
bination of genetic differences among lines and environmental
variance, with the environmental variance expected to be equal to
that observed among the lines isolated from the sham-treated
population. Comparing the distribution of mutational effects ob-
served for the 254 mutagenized lines affecting expression of the
TDH3 reporter gene to the distribution of mutational effects
inferred previously using an independent collection of >1,200
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Fig. 2. Distributions of expression levels observed for mutagenized and unmutagenized lines. (A–J) Distributions of expression among mutagenized (colors)
and sham-treated lines (overlaid gray transparency) for each promoter. Expression levels (x axis) in both mutant and sham populations are expressed relative
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mutagenized lines carrying the same TDH3 reporter gene (24)
(Fig. 1C) suggested that the sample sizes used in this study are
sufficient to provide reasonable approximations of the underlying
mutational distributions.

Distributions of Mutational Effects Differ in Skewness, Kurtosis, and
Dispersion. For all promoters, we observed that the distribution of
expression levels for sham-treated lines was symmetrical (Fig. 2,
gray distributions), indicating that nongenetic (environmental)
sources of variation were equally likely to increase and decrease
expression relative to the median. The distribution of expression
levels for EMS-treated lines was asymmetric, however, for some
promoters (Fig. 2, colored distributions; SI Appendix, Table S3),
suggesting that mutations have biased effects on the expression
driven by these promoters. Specifically, 3 promoters exhibited
statistically significant departures from symmetry resulting from
differences in the magnitude of increased or decreased expression
in mutagenized lines relative to the median of the sham-treated
lines: Mutagenized lines carrying the TDH1 and STM1 promoters
showed larger increases than decreases in expression (SI Appendix,
Table S3: permutation test, TDH1: P = 0.006; STM1: P = 0.031),
and mutagenized lines carrying the RNR2 promoter showed larger
decreases than increases in expression (P = 0.013).
Before comparing the distributions of mutational effects de-

rived from the mutagenized lines among promoters, we took into
account differences in the environmental variance among pro-
moters revealed by differences in the distributions of expression
levels for sham-treated lines among promoters. To do so, we con-
verted the expression level measured for each mutagenized line into
a Z score (SI Appendix, Fig. S1) by subtracting the median ex-

pression level of sham-treated lines with the same promoter and
then dividing by the SD of expression levels for these sham-treated
lines. In this Z-score scale, 1 unit corresponds to a change in ex-
pression equivalent to 1 SD in the population of sham-treated lines
for that promoter. Variance of these Z scores is equivalent to
mutational heritability calculated by dividing the (mutational) var-
iance observed among the mutagenized lines by the (environmen-
tal) variance estimated by the sham-treated lines; mutational
heritability is the metric used to compare the effects of mutations on
different traits (38). For all promoters, we found that at least 60%
of mutagenized lines (range, 60 to 86%) had expression Z scores
within 2 SDs of the sham median, indicating that most mutagenized
lines showed expression levels similar to those occurring due to
environmental variance (Fig. 3A and SI Appendix, Table S4).
The distributions of Z scores for EMS-treated lines violated

normality for all 10 promoters (Shapiro–Wilks test; SI Appendix,
Table S5). To more fully describe the shapes of these distributions,
we calculated robust summary statistics that are less sensitive to
outliers than the traditional measures used to estimate moments
of a distribution (39–41) (SI Appendix, Figs. S2–S5). Comparing
the shapes of distributions of mutational effects among promoters
(Fig. 3A and SI Appendix, Fig. S6), we observed differences in the
centrality (median), dispersion (median-averaged deviation or
MAD), skewness (medcouple or MC), and relative frequency of
lines with extreme effects (left/right medcouple or LMC/RMC; SI
Appendix, Table S4). A principal-component analysis of summary
statistics describing these properties found that the first principal
component explained 36% of the variance among promoters and
primarily captured skewness and the frequency of extreme in-
creases in expression (SI Appendix, Fig. S6 A and D). A second,
independent, principal component explained 30% of the variance
and was strongly influenced by median and dispersion (SI Ap-
pendix, Fig. S6 B and E). Finally, the third principal component
explained 24% of the variance and was influenced by both extreme
decreases in expression and dispersion (SI Appendix, Fig. S6 C and
F). Because differences in symmetry among promoters dominated
these contrasts, we chose to more directly examine skewness for a
range of effect sizes using quantile–quantile plots comparing the
magnitude of increases to the magnitude of decreases moving
away from the median for each promoter (Fig. 3B). By illustrating
biases in the direction and magnitude of mutational effects as
departures from the 45° line, these plots highlight differences
among promoters such as the asymmetries described above for
STM1, RNR1, TDH1, and RNR2.
Directly comparing the distributions of Z scores between

promoters, we found 13 of 45 pairwise comparisons had distribu-
tions of mutational effects that differed significantly between
promoters (Anderson–Darling test [AD], P < 0.05 with Benjamini–
Hochberg [BH] correction for multiple tests; SI Appendix, Fig.
S7 and Table S6). Seven of these 13 cases involved RNR1, which
possessed an especially unique distribution of mutational effects
due to a wide dispersion of Z scores among mutagenized strains
and an overall negative skew, including a small decrease in median
compared to its sham population. The distribution of mutational
effects for STM1 was significantly different from 5 other pro-
moters including RNR1, exhibiting biases in the opposite direction
from the RNR1 distribution: STM1 also showed broad dispersion,
but exhibited an overall positive skew with more large effect in-
creases in expression than any other promoter, including a small
increase in median compared to its sham population. Other dis-
tributions of mutational effects that showed pairwise differences
from more than one other promoter included TDH1 and RNR2,
which were significantly different from each other and 2 other
promoter distributions (TDH1: RNR1, VMA7; RNR2: RNR1,
STM1). Like STM1, TDH1 exhibited a positive overall skew with
more density in the right tail of its distribution of mutational ef-
fects, but without the right shift in median. RNR2 was distinct in
showing the most humped (also known as platykurtic) distribution
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with the least density in the extreme tails. This RNR2 distribution
also showed a slight shift in median toward increased expression
despite an overall negative skew.

Relationships between Promoter Properties and Distributions of
Mutational Effects. As described above, the promoters included
in this study were chosen because they vary for properties hy-
pothesized to influence the mutability of gene expression. To
determine whether any of these properties might explain the
differences in distributions of mutational effects that we observed,
we tested for evidence of a significant relationship between the
robust summary statistics describing the empirical distributions of
mutational effects and the following 7 gene properties: 1) expres-
sion level of the native gene, 2) expression noise for the native
gene, 3) presence of a canonical TATA box in the gene’s promoter,
4) number of trans-regulatory factors annotated in YEASTRACT
for the gene, 5) density of nucleosome occupancy in the gene’s
promoter region, 6) presence of a duplicate gene in the yeast ge-
nome, and 7) fitness of strains homozygous for a deletion of the gene
in rich media. We observed no statistically significant relationship
between either dispersion (breadth) measured as MAD or skewness
measured as MC and any of the 7 properties tested after correction
for multiple tests (SI Appendix, Fig. S8). We also tested whether the
nongenetic variability of each promoter observed among the sham-
treated lines could predict mutational variance, as suggested by prior
work (9), but did not observe a significant correlation between the
variance in Z scores among EMS-treated lines and the variance
of expression levels in the corresponding sham-treated lines
(Spearman’s rho = −0.27, P = 0.448). For all of these analyses,
our power to detect significant effects was limited by the number
of genes analyzed. Future studies deeply sampling the effects of
mutations on many more genes are needed to better understand
how properties of promoters, or the regulatory networks they are
embedded in, affect gene-specific distributions of mutational
effects for gene expression.

Predicting Neutral Expression Divergence Using Distributions of
Mutational Effects. In the absence of empirical data describing
the distribution of mutational effects for a specific trait, tests for
selection often make the simplifying assumption that distributions
of mutational effects are symmetric or normally distributed (e.g.,
ref. 42). This assumption is based on the idea that quantitative
traits are generally controlled by many loci with small effects (43).
If traits are controlled by relatively few loci and/or loci of large
effect, as sometimes seems to be the case for gene expression (22,
44), the distribution of mutational effects may be likely to violate
normality. Our study supports this observation for gene expression
phenotypes, and studies of mutational effects for morphological
traits (largely in Drosophila) have also tended to produce non-
normal (leptokurtic) distributions of mutational effects with heavy
tails (45–53), suggesting they might have similar genetic architec-
ture. Theoretical work has shown that ignoring nonnormality of
distributions of mutational effects can cause evolutionary models
to produce misleading inferences (54–57), but the sparseness of
empirical data describing distributions of mutational effects has
limited our ability to assess the magnitude of errors caused by
these assumptions. To address this knowledge gap, we used our
empirical distributions of mutational effects to parametrize mod-
els of neutral regulatory evolution for the 10 genes examined,
contrasting expression divergence predicted by simulations incor-
porating the full empirical distributions of mutational effects and
Brownian motion models assuming mutational effects are nor-
mally distributed with a variance equal to the empirically observed
mutational variance.
For each promoter, we simulated a population of 1,000 indi-

viduals with expression levels drawn randomly with replacement
from the distribution of expression levels for that promoter’s sham
population. Each individual then had a probability of mutating

equal to the spontaneous mutation rate observed in a S. cerevisiae
MA study [1.67 × 10−10 per nucleotide per generation (27)],
resulting in a new mutation arising in 2 individuals on average
each generation. The effect of each mutation was determined by
randomly sampling with replacement from the distribution of
mutational effects for that promoter and multiplying this effect by
the individual’s original expression level, making the simplifying
assumption that the distributions of mutational effects stay con-
stant over time. This approach also assumes that the variation in
expression among EMS-treated lines is attributable to a single
causal mutation within each line, with no influence from other
mutations or epistatic effects. We think that this assumption is
reasonable because only one mutation was found to be responsible
for changes in PTDH3-YFP expression mapped in mutants gener-
ated with the same mutagenesis treatment (33), although the
frequency of mutations affecting expression of other genes is
expected to differ and remains unknown. One thousand simulated
individuals were then randomly sampled with replacement to
populate the next generation. This procedure was repeated for
50,000 generations, calculating mean expression level within the
population at each generation. Five hundred independent simu-
lations were run for each promoter to determine the variation in
simulated mean expression levels at each generation.
At the end of 50,000 generations, expression divergence dif-

fered dramatically among promoters (Fig. 4). Promoters with a
strong positive mutational skew in the distribution of mutational
effects like STM1 and TDH1 exhibited large increases in median
population expression levels across 500 independent evolutionary
trajectories, while promoters with a strong negative mutational
skew like RNR1 and RNR2 showed large declines in median
population expression levels. Promoters with more symmetric
mutational distributions, for example, VMA7 and OST1 (SI
Appendix, Table S3), exhibited less expression divergence from the
original expression level. The TDH3 mutational distribution was
also symmetric but included a few mutants with low expression
relative to the rest of the population that caused large step-like
decreases in expression when sampled; excluding the 5 lowest
values or sampling from the larger collection of mutant pheno-
types from ref. 24 resulted in much more symmetric evolution of
TDH3 expression (SI Appendix, Fig. S9). Among all 10 evolution-
ary trajectories, promoters with mutational distributions that had a
greater skew or heavier weight in one tail diverged more, as
expected: grand median expression at generation 50,000 was
jointly predicted by skewness and weight in the extreme negative
tail of the promoter-specific mutational distributions (grand me-
dian expression [log transformed to improve normality] at gen-
eration 50 K ∼ MC + LMC, F(2,7) = 20.15, P = 0.001). Similar
results were observed using simulations with a population size of
100 instead of 1,000 individuals (SI Appendix, Fig. S9 C–L) and
when using expression levels converted to Z scores (SI Appendix,
Fig. S10).
We next simulated changes in expression expected for each

gene under the more commonly used model of random walks in
phenotype space described by Brownian motion. In this model,
mutational effects were drawn from a normal distribution cen-
tered on the expression level of the unmutagenized promoter
with variance equal to the variance observed among the muta-
genized lines analyzed for that promoter. We again examined the
population means of 500 independent simulations after 50,000
generations. We found that the Brownian motion simulations
parametrized only with the empirical variance showed less overall
divergence from the starting point than simulations drawing mu-
tational effects from the full empirical distributions, although the
extent of difference between the 2 models varied among pro-
moters (Fig. 5, mean expression [log transformed] at generation
50 K ∼ Promoter × Model Type: F(19,9980) = 616, P < 2.2 × 10−16

with significant interaction identified by ANOVA F test, P < 2.2 ×
10−16; SI Appendix, Table S7).
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To determine how well empirically derived distributions of
mutational effects might estimate neutral trait evolution, we com-
pared properties of gene-specific distributions of mutational ef-
fects to levels of polymorphism seen for that gene among 22
natural isolates of S. cerevisiae (48) because polymorphism is often
assumed to primarily reflect neutral processes (47). We observed a
significant positive relationship between the degree of disper-
sion (MAD) in the mutational distribution and expression poly-
morphism measured as the expression variance among the 22
natural isolates [SI Appendix, Fig. S11, ExpVar ∼ MAD, F(1,8) =
8.18, P = 0.021]; however, this relationship was driven primarily by
TDH1, which was an outlier for MAD with respect to the other
promoters (SI Appendix, Fig. S4). Excluding TDH1 reduced the
strength of this correlation and resulted in a P value that was not
statistically significant [ExpVarnoTDH1 ∼ MADnoTDH1, F(1,7) =
1.122, P = 0.325, dotted line]. Skewness of the distribution of
mutational effects also failed to significantly predict polymorphism
(ExpVar ∼ MC, F = 0.58, P = 0.47); however, in both cases, we
note that our power to detect such relationships is limited by the
number of genes studied. Testing for relationships between the
effects of mutation and polymorphism more robustly will require
similarly deep sampling of mutational effects for many more genes
in the yeast genome.

Modeling Distributions of Mutational Effects and the Evolution of
Gene Expression. One of the benefits of assuming a normal dis-
tribution of mutational effects is that it simplifies modeling by
allowing draws from a well-known continuous distribution rather
than a collection of discrete empirical data points. We therefore
sought to identify continuous probability distributions that re-
flect the shape of the observed empirical distributions of muta-
tional effects better than normal distributions. Distributions of
mutational effects for leaf traits in Arabidopsis have previously

been described using the family of distributions known as LaP-
lace distributions (53), also known as double-exponential distri-
butions, which have fatter tails than the normal distribution and
can be specified in both symmetric (2-parameter) and asymmetric
(3-parameter) forms. To determine whether LaPlace distributions
fit distributions of mutational effects for gene expression better
than normal distributions, we used maximum likelihood to opti-
mize parameters for Gaussian, symmetric LaPlace, and asym-
metric LaPlace distributions. Bayesian information criteria (BIC)
were used to identify the best-fitting distribution for each pro-
moter. For all 10 promoters, LaPlace distributions were better
supported than a normal distribution for the observed distribution
of mutational effects (SI Appendix, Table S8). The VMA7 pro-
moter exhibited similar levels of support for symmetric and
asymmetric LaPlace distributions, whereas all other promoters
were best described by asymmetric LaPlace distributions. These
observations suggest that LaPlace distributions may provide more
realistic distributions of mutational effects than normal distribu-
tions. They also encourage further investigation into models of
regulatory evolution that relax the assumption that all loci have
equal effects (54–56) and favor models of phenotypic evolution
that allow for a high variance in mutational effects (58).

Conclusion
By studying the effects of thousands of new mutations on ex-
pression of individual genes, we have shown how distributions of
mutational effects for gene expression differ among genes. Dif-
ferences observed in the direction and magnitude of mutational
effects suggest that some genes may exhibit underlying biases in
the expression variation available to selection. In addition, large
changes in gene expression were more common than predicted
by a normal distribution. For most genes, a null model of neutral
expression divergence based on sampling mutations from these

Fig. 4. Neutral changes in gene expression pre-
dicted by distributions of mutational effects. Evolu-
tionary simulations based on empirical mutational
distributions for populations of 1,000 individuals
evolving in the absence of selection for 50,000 gen-
erations are shown for all 10 promoters (A–J). Pop-
ulation divergence at each generation (x axis) was
summarized by the mean population phenotype
represented on a log2 scale (y axis). Shaded areas
represent the 95% credible intervals for the mean
population phenotype at each generation among
500 independent evolutionary trajectories. The
darkest line represents the grand median of all in-
dependent simulations, and lighter shading moving
away from the grand median represents quantiles of
replicate populations in increments of 10. All pop-
ulations evolved from a starting population with a
mean of log2(100) corresponding to 6.64.
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distributions predicted greater expression divergence than Brownian
motion models parametrized with mutational variance alone, sug-
gesting that neutral evolution might explain more variability in
gene expression within and between species than often assumed.
Challenges for the future include 1) deeply characterizing the dis-
tribution of mutational effects for more genes, 2) measuring dif-
ferences in the frequency of mutations affecting expression among
genes, 3) determining how distributions of mutational effects vary
among genetic backgrounds due to epistasis, and 4) identifying
features of regulatory networks that can be used to predict a par-
ticular gene’s propensity for mutations of a certain effect. Because
gene expression is a critical step in the conversion of genotypes to
phenotypes, addressing these issues will improve our under-
standing of the evolutionary processes that generate, maintain,
and control variation in complex traits more generally.

Materials and Methods
More detailed information on the materials and methods used in this study
are provided in SI Appendix, Materials and Methods.

Promoter Selection. Promoters from the GPD1, OST1, PFY1, RNR1, RNR2,
STM1, TDH1, TDH2, TDH3, and VMA7 genes were selected to represent a
diverse range of properties expected to impact mutational variability (9, 18),
including expression noise (59), presence of a TATA box motif (60), variation
in nucleosome occupancy (61), mutational variance in MA studies, and fit-
ness of homozygous gene deletion strains (62) (SI Appendix, Table S1).
Maximizing sensitivity for flow cytometry required that all promoters drive
relatively high expression, and promoters were thus selected from the 15%
most highly expressed genes in S. cerevisiae (63).

Strain Creation. To assay promoter activity, a construct consisting of the
promoter region of each focal gene (defined as the intergenic sequence
between the start codon of the focal gene and next upstream gene) followed
by the Venus YFP coding sequence, the CYC1 terminator, and an indepen-
dently transcribed KanMX4 drug resistance was integrated at the HO locus of
a BY4724-derivative strain, YPW1139, described in ref. 24. Constructs were
generated through tailed PCR and transformed via homologous recombi-

nation into a strain with a ho::URA3-YFP allele. The genetic background of
this strain carried the alleles RME1(ins-308A); TAO3(1493Q) (64) and SAL1;
CAT5(91 M); MIP1(661T) (65), which decrease petite frequency relative to the
alleles of the ancestral BY4724. Data reported include previously published
results for TDH3 (24) reanalyzed in a common framework with the 9 addi-
tional promoters reported here.

Mutagenesis. To sample the genome-wide effects of point mutations on
promoter activity, we performed random mutagenesis of strains carrying all
promoter constructs. Mutagenesis was executed as in ref. 24 using the
chemical mutagen EMS, which introduces G/C to A/T point mutations ran-
domly throughout the genome (see SI Appendix for details). Based on
canvanine resistance assays performed for P-TDH1-YFP, we estimated that
an average of ∼29 mutations were introduced per cell with the EMS con-
ditions used (95% percentiles: 24 to 39), consistent with refs. 24 and 32.
Sham-treated controls including both a promoter-matched genotype and a
P-TDH3-YFP construct were maintained in parallel and treated identically with
the exception of EMS exposure. Following mutagenesis, single cells from
EMS- and sham-treated populations were isolated via FACS and recovered
on YPD agar (2% dextrose, 1% yeast extract, 2% peptone, 2% agar) for
48 to 72 h at 30° C. A minimum of 8 plates were sorted per promoter con-
struct with 30 mutagenized cells, 8 promoter-matched sham-treated cells,
and 8 P-TDH3-YFP sham-treated cells interspersed among 24 control posi-
tions. Viability of isolated cells was significantly impacted by treatment
condition, but not by the genetic background or mutagenesis batch [glm
quasibinomial models: (Viability ∼ Condition) vs. (Viability ∼ Condition + Batch),
F test, F(47,55) = 0.931, P = 0.5002; (Viability ∼ Condition) vs. (Viability ∼
Condition × Batch), F test, F(15,55) = 0.5656, P = 0.9242].

After the isolated cells were grown into colonies, the colonies were
transferred from agar to liquid YPD and grown to saturation with shaking,
typically 20 to 24 h at 30° C. These saturated cultures were then used 1) to
preserve each line as a glycerol stock and 2) to initiate cultures for analyzing
fluorescence. Cultures for analyzing fluorescence were spotted on YPD agar,
and 20 to 24 plate control strains for estimating random experimental effects
were interspersed into each row and column. After an additional 48- to 72-h
growth, colonies were transferred to liquid YPD in 96-well deep-well culture
plates, grown for 20 to 24 h to saturation with shaking, and scored for fluo-
rescence. A minimum of 4 replicate assays were performed for each plate.

Phenotyping and Data Processing. To characterize promoter expression levels,
YFP fluorescence driven by the promoter of interestwas quantified for all sham-
treated, EMS-treated, and plate control samples. Fluorescence data were col-
lected on a BDAccuri C6 (488-nm laser and 530/30 optical filter) coupledwith an
IntelliCyt HyperCyt autosampler. Cultures were diluted in 1× PBS to ∼106 cells
per mL directly before scoring. A total of 48 samples was collected per in-
strument run with gentle vortexing to aerate and resuspend cells between
runs. Samples analyzed sequentially within the same instrument run were
distinguished by the Hyperview software (Intellicyt). Appropriate separation of
samples was manually checked for every plate.

Using tools from the flowCore and flowClust libraries (66, 67) and custom
scripts (Access to Data and Analysis Scripts), flow cytometry data were an-
alyzed to remove noncellular debris, events where more than 1 cell passed
the detector, extreme outliers in cell size or YFP, and correlation between
cell size and YFP expression (SI Appendix, Materials and Methods). Addi-
tionally, because fixed photomultiplier tube (PMT) voltages on the Accuri C6
produce nonlinearity between fluorophore concentration and fluorescence
intensity level (68), this study follows ref. 37 in using a standard curve de-
termined by quantifying RNA abundance via pyrosequencing and fluores-
cence intensity via flow cytometry for the same samples to scale mRNA
abundance estimates appropriately (SI Appendix, Materials and Methods).
These procedures were performed on a single-cell basis for all events that
passed quality control thresholds in each sample well. Individual samples
were then summarized by calculating median YFP RNA abundance and co-
efficient of variation (CV) (estimated as MAD/median). Cell size was also
summarized as median FSC and FSC MAD. A number of samples were ex-
cluded at this stage for phenotypes consistent with high levels of bacterial
contamination (small cell size and no YFP expression) or contamination with
P-TDH3 sham controls (YFP expression at the median of the PTDH3-YFP sham
lines for a non PTDH3-YFP sample). Any samples with fewer than 1,000 single
cells passing quality control filters were excluded from analysis. The median
and minimum number of cells analyzed per sample are listed by promoter in
SI Appendix, Table S4.

To account for technical variability across plates, YFP mRNA abundance
and FSC metrics for each sample were then normalized to remove random
effects due to technical noise arising among instrument runs, plate row
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Fig. 5. Contrasting neutral models of regulatory evolution. Evolutionary
divergence predicted after 50,000 generations by neutral simulations drawing
mutational effects from the full empirical distribution of mutational effects (x
axis) or a Brownian motion model drawing mutations from a normal distri-
bution parametrized with the variance of the empirical mutational distribu-
tions (y axis). Points represent the grand median expression level among
independent evolutionary trajectories for each gene at generation 50,000 un-
der each model on a log scale. Error bars represent 95% credible intervals
among 500 replicate populations.

Hodgins-Davis et al. PNAS | October 15, 2019 | vol. 116 | no. 42 | 21091

EV
O
LU

TI
O
N

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
23

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902823116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902823116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902823116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902823116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902823116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902823116/-/DCSupplemental


www.manaraa.com

position, or plate column position. The power to perform these normali-
zations came from inclusion of 20 to 24 control strains in each experimental
96-well plate. Initial experiments were performed using a P-TDH3-YFP
construct in control positions as in previous work, but when contrasts
showed that controls provided more robust correction when matched to
the fluorescence phenotype of the construct being corrected, subsequent
experiments matched the genetic background of controls to the promoters
tested.

To summarize phenotypes estimated for each line isolated, means and SDs
were calculated for independent measurements of population medians and
CVs across replicated samples. Any individual replicate that was more than 4
MAD outside of other estimates for the same line was called as an outlier and
excluded from further analysis. Only lines with at least 3 independent rep-
licates passing all quality control filters were included in downstream data
analysis. These stringent quality control procedures resulted in differences in
the total number of lines represented across conditions for different pro-
moter constructs (SI Appendix, Table S4).

Characterization of Mutational Spectra. Statistical analyses to characterize
mutational spectra across promoters were performed in R (69).

To characterize asymmetry in distributions of expression levels, expression
levels of lines were divided into groups with expression greater than (in-
creases) and less than (decreases) the median sham expression level.

The observation that sham-treated lines differed in their variability among
promoters (SI Appendix, Fig. S1A) led us to calculate a Z score as a metric for
capturing the increase in variability due to EMS treatment alone across
promoters. To calculate mutational Z scores, the median of sham phenotype
for each promoter was subtracted from each line’s YFP expression value and
the resulting quantity was divided by the SD among the sham-treated lines
for that promoter. The resulting metric was centered on 0 and expressed in
units representing SDs among unmutated individuals expressing a matched
promoter construct (SI Appendix, Fig. S1B).

To describe differences in the shapes of these distributions of mutational
effects on this Z-score scale, we explored a variety of metrics. Summary
statistics like sample mean, variance (or SD), skewness, and kurtosis are
commonly used to describe distributions; however, these measures have
been shown to be particularly vulnerable to influence by outliers (41). More
robust statistical measures can be used to describe distribution shape while
controlling the impact of outliers in situations where sample size is limiting
(39). Here, we apply the MAD to characterize distribution breadth in place of
SD (70), MC to characterize distribution bias in place of skewness (71), and
LMC and RMC to characterize the location of distribution tail weight in place
of kurtosis. By downsampling data from a previously published mutagenesis
experiment including more than 1,200 mutagenized lines, we illustrated
that sample median, MAD, MC, and LMC and RMC provide more robust and
repeatable characterizations of distribution shape (SI Appendix, Figs. S2–S5).
Then, to identify the combination of variables explaining differences between
mutational distributions of different promoters, we performed a principal-
component analysis (72) on robust estimators of moments extracted from
Z-score distributions across promoters (SI Appendix, Fig. S6).

Promoter-specific mutational distributions of Z-scores were visualized by
generating stacked density plots using ggplot2 (73). To test for differences in
the shapes of distributions of mutational effects between promoters, we
applied the nonparametric AD k-sample test (74, 75) to identify pairwise
differences between different promoter mutational distributions, using the
BH procedure to control the false-discovery rate in these multiple pairwise
tests at 5%.

Correlation of Promoter and Population Parameters with Mutational Summary
Statistics. Promoter properties were collected from the literature (59–62, 76).
Linear models predicting summary statistics MC and MAD independently
were tested including all promoter property correlates as additive effects.
Given the small number of genes involved, the relationship to promoter
properties was explored both for continuous metrics and by dividing
continuous data into categories of low and high values around the me-
dian. A process of model simplification was used to identify predictors
explaining variation in MAD or MC, and a BH multiple test correction was
performed. Population polymorphism quantified as variance in expression
among 22 natural isolates (77) was also tested for a significant relationship
with MAD and MC.

Evolutionary Simulations. To illustrate the consequences of the mutational
distributions reported here for evolutionary predictions under neutrality, we
simulated evolution of an asexual population of individuals randomly sam-
pling mutations impacting the focal promoter and tracked the trajectory of

the mean population phenotype over time. For each promoter, populations
were initiated by sampling a starting phenotype for each individual (n =
1,000) from a smoothed version of the sham-treated population. Each
generation each individual mutated with a probability determined based on
the average estimate of per-generation rate of point mutations (∼1.67 ×
1010 bp/generations) detected in MA studies (27) multiplied by the S.
cerevisiae genome size (1.25 × 107 bp). When individuals mutated, they drew
a mutational effect size from the distribution of expression levels esti-
mated for EMS-treated lines and multiplied their current phenotype by
that effect size. Simulations were performed using mutational effects
drawn from both relative expression (Figs. 4 and 5) and Z-score (SI Ap-
pendix, Fig. S10) scales. Individuals were randomly selected for inclusion in
the population each generation. Simulations ran for 50,000 generations
and 500 replicate simulations were performed for each promoter. To
contrast these results with more typical evolutionary Brownian motion
predictions based on an assumption of normally distributed mutational
effects, we also ran versions of the simulation from each promoter that
were identical except that the mutational effects were drawn from a
normal distribution with mean of 0 and variance based on variance among
all EMS-treated lines for the promoter. For each promoter, evolutionary
trajectories were described by the distribution of population means for
each generation among independent replicates, and total divergence
within each simulation was summarized by the distribution of population
means at generation 50,000.

To ask whether differences among models and among genes altered the
neutral divergence predicted, we fit a linear model predicting the median
phenotype of each replicate population after 50,000 generations based on
promoter identity and model identity (Log Median Expression at Gener-
ation 50 K ∼ Promoter × Model Type) and use an ANOVA F test to assess fit
of full and reduced models. To show how differences in distribution shape
related to changes in evolutionary predictions under the 2 models, we
summarized population mean expression among all replicates with a
median and then predicted this median expression for each gene based on
robust summary statistics calculated for each distribution of mutational
effects (Log Grand Median Generation 50 K ∼ MAD + MC + LMC + RMC).
We performed this procedure separately for the Brownian and full empirical
models, and performed model simplification dropping variables with no ex-
planatory power to identify the summary statistics predicting expression di-
vergence in each case.

Distribution Fitting. To identify the family of probability distributions best
fitting the empirically defined distributions of mutational effects, maximum-
likelihood estimationwas performed to identify parameters and log-likelihoods
for theGaussian, symmetric LaPlace, and asymmetric LaPlace distributions given
the empirical data. This procedure was performed independently for the EMS-
treated populations of each promoter. BIC values were calculated for each fit to
identify the best-supported model while appropriately penalizing for differ-
ences in number of parameters among the distributions (2 for Gaussian and
symmetric LaPlace, 3 for asymmetric LaPlace). ΔBIC values were calculated for
each fit by subtracting the BIC of the model with the lowest BIC values from all
others. We took ΔBIC values greater than 10 as a signal of poor support for
a given model.

Access to Data and Analysis Scripts. Raw flow cytometry data are available at
http://flowrepository.org/ (records FR-FCM-ZYUW and FR-FCM-ZZNR).

Datasets are as follows: Dataset S1, primers used to generate and se-
quence confirm reporter constructs; Dataset S2, R code for processing raw .fcs
files, normalizing phenotypes by plate controls, filtering outliers, and calcu-
lating mean phenotypes by promoter; Dataset S3, R code used to contrast
mean phenotypes among promoters; and Dataset S4, R code for evolutionary
simulations.

Additional data files required to reproduce this work are available from
DeepBlue Data, https://deepblue.lib.umich.edu/. These include .zip files con-
taining 1) layout spreadsheet with experimental metadata linking .fcs files
to samples, and 2) processed data file including mean phenotypes.
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